• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Institute Logo WW8
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Werkstoffwissenschaften
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Werkstoffwissenschaften

Institute Logo WW8

Navigation Navigation close
  • Teaching
  • Institute Seminar
  • Publications
    • Dissertations
    Portal Publications
  • Research
  • Institute
    • Directions
    • Staff
      • Alumni
    Portal Institute
  • Intranet

Institute of Materials Simulation

Website of the Institute of Materials Simulation

In page navigation: Institute Seminar
  • Summer Term 2025
  • Winter Term 2024/2025
  • Summer Term 2024
  • Winter Term 2023/2024
  • Summer Term 2023
  • Winter Term 2022/23
  • Summer Term 2022
  • Winter Term 2021/22
  • Summer Term 2021
  • Winter Term 2020/21
  • Summer Term 2020
  • Winter Term 2019/20
  • Summer Term 2019
  • Winter Term 2018/19
  • Summer Term 2018
    • Effect of vertical twin boundary on the mechanical properties of bicrystalline copper micropillars
    • Network Dimension as Damage Indicator in Biosystems
    • Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper.
    • Forecasting catastrophe: Statistical physics approach
    • On stress and driving force calculation within multi-phase-field models: Applications to martensitic phase transformation and crack propagation in multiphase systems
    • A Dislocation-based Multiscale modeling of Strength and Ductility of Materials with Gradient Microstructure
    • Coupled Problems in Constitutive Modeling Across Various Lenght-Scales
    • Optimization of network structures in view of failure resilience
  • Winter Term 2017/18
  • Summer Term 2017
  • Winter Term 2016/17
  • Summer Term 2016
  • Winter Term 2015/16
  • Summer Term 2015
  • Winter Term 2014/15
  • Summer Term 2014
  • Winter Term 2013/14
  • Summer Term 2013
  • Winter Term 2012/13

Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper.

Location

Seminar room

Room: Room 2.018-2
Dr.-Mack-Str. 77
90762 Fürth

Opening hours

Events and Lectures

Xu Zhang

Max Planck-Institut für Eisenforschung GmbH, Düsseldorf

Wednesday, 02.05.2018, 17:00
WW8, Raum 2.018, Dr.-Mack-Str. 77, Fürth

 

Overcoming the trade-off between strength and ductility in metallic materials is a grand challenge. Recently, materials with a gradient nano-grained (GNG) surface layer adhering to a ductile coarse-grained (CG) substrate have been proposed to surmount this long-standing dilemma. Constitutive modeling and simulation are crucial to understand the deformation mechanisms controlling the strength and ductility in GNG/CG materials, and to enable theory guided microstructure optimization for upscaling. Here, we develop a dislocation mechanism based size-dependent crystal plasticity model, where multiple dislocation evolution mechanisms are considered. Furthermore, damage evolution and mechanically driven grain growth during the deformation of GNG/CG materials are incorporated into the constitutive model to study the role of microstructure gradient in the overall plastic response. The developed size-dependent constitutive model was implemented within a finite-strain crystal plasticity finite element framework, and successfully applied to predict the tensile mechanical behavior of GNG/CG copper, including yield stress, strain-hardening and ductility. The simulations reveal some of the underlying deformation mechanisms controlling ductility and strengthening in terms of the spatial distribution and temporal evolution of microstructure and damage. The model was also used as an optimization tool for balancing strength and ductility of GNG/CG copper. By manipulating the thickness of the GNG layer and the grain size of the CG substrate, we predict that the strength increase is associated with a loss of ductility in the same inverse linear way as observed experimentally for GNG/CG copper, enabling a deviation from the typical nonlinear trade-off between strength and ductility.

Friedrich-Alexander-Universität Erlangen-Nürnberg
Institute of Materials Simulation

Dr.-Mack-Str. 77
90762 Fürth
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • RSS Feed
Up