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The micromorphic approach to elasto–plasticity (1)
(Mindlin, 1964; Eringen and Suhubi, 1964; Forest, 2009)

• The displacement and a scalar plastic microdeformation
variable are the degrees of freedom DOF = {u , pχ}

• Define the set of state and internal variables

STATE = {ε∼, T , p, pχ, ∇ pχ}

the internal variable p is the accumulative plastic strain

• Extend the virtual power of internal forces

P(i)(v ?, ṗ?
χ) = −

∫
D

p(i)(v ?, ṗ?
χ) dV

p(i)(v ?, ṗ?
χ) = σ∼ : ∇v ? + a ṗ?

χ + b .∇ ṗ?
χ

a,b generalized stresses or microforces (Gurtin, 1996)

• Derive additional balance equation and boundary conditions
based on the method of virtual power

div b − a = 0, ∀x ∈ Ω, b .n = ac ,∀x ∈ ∂Ω
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The micromorphic approach to elasto–plasticity (2)

• Enhance the local balance of energy and the entropy inequality

ρε̇ = p(i) − div q + ρr , −ρ(ψ̇ + ηṪ ) + p(i) −
q

T
.∇T ≥ 0

• Elastic-plastic decomposition: ε∼ = ε∼
e + ε∼

p

• Consider the constitutive functionals:

ψ = ψ̂(ε∼
e ,T , p, pχ,∇pχ), η = η̂(ε∼

e ,T , p, pχ,∇pχ)

σ∼ = σ̂∼(ε∼
e ,T , p, pχ,∇pχ)

a = â(ε∼
e ,T , p, pχ,∇pχ), b = b̂ (ε∼

e ,T , p, pχ,∇pχ)

• State laws

σ∼ = ρ
∂ψ̂

∂ε∼
e
, η = − ∂ψ̂

∂T
, R = ρ

∂ψ̂

∂p
, a =

∂ψ̂

∂pχ
, b =

∂ψ̂

∂∇pχ

• Residual dissipation Dres = σ∼ : ε̇∼
p − Rṗ −

q

T
.∇T ≥ 0
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Micromorphic elasto–plasticity

• Quadratic free energy potential

ρψ(ε∼
e , p, pχ,∇pχ) =

1

2
ε∼

e : Λ
≈

: ε∼
e+

1

2
Hp2+

1

2
Hχ(p−pχ)2+

1

2
∇pχ.A∼.∇pχ

• Constitutive equations

σ∼ = Λ
≈

: ε∼
e , a = −Hχ(p−pχ), b = A∼ .∇pχ, R = (H+Hχ)p−Hχpχ

• Substitution of constitutive equation into the extra–balance
equation

pχ −
1

Hχ
div (A∼ .∇pχ) = p

• Homogeneous and isotropic material A∼ = A1∼

pχ −
A

Hχ
∆pχ = p, b.c. ∇pχ.n = ac
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Link to Aifantis strain gradient plasticity

• Yield function f (σ∼ ,R) = σeq − σY − R

• Evolution laws Dres = σ∼ : ε̇∼
p − Rṗ − X α̇ ≥ 0

ε̇∼
p = λ̇

∂f

∂σ∼
, ṗ = −λ̇ ∂f

∂R

• Hardening law

R =
∂ψ

∂p
= (H + Hχ)p − Hχpχ

• Under plastic loading

σeq = σY + Hpχ − A(1 +
H

Hχ
)∆pχ

compare with Aifantis model (Aifantis, 1987)

σeq = σY + R(p)− c2∆p

The equivalence is obtained for Hχ = ∞ (internal constraint):

pχ ' p, A = c2
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Mesh–dependency of standard FE simulations of Lüders bands
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Strain field measurements
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Strain field measurements
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(a) (b) (c)

0.0120 p

(Ballarin et al., 2009)
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Smooth propagation of the front
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Smooth propagation of the front
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Multi–linear softening-hardening material

pLpmpR

σM

σp

σm

p

σ

H1 H2

peak stress: σM , minimal stress: σm, plateau stress σp, Lüders
strain pL, hardening moduli H1 < 0,H2 > 0.
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Bifurcation analysis

Band 
tail

Band
front

Elastic
domain

Y

X

O
Tensile
direction

propagation
Band

direction

b

a

n

Homogeneous tensile stress state. The strain localization band in
2D (Rice’s criterion) is inclined at 54.7◦ from the the tensile axis
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Description of the band front

Band tail
O Yf

[[p(Y )]] = 0, p(0) = pm

[[p
′

(Y )]] = 0

p(Y ) = 0
p
′

(Y ) = 0

Y

lim
Y→−∞

p
′

(Y ) = 0
p(Y )lim

Y→−∞
p(Y ) = pL

Band front

H < 0

H > 0
domain
Elastic

• σp = σm + H2(p − pm)− Ap
′′
, l22 =

A

H2
=⇒ sine branch

• σp = σm + H1(p − pm)− Ap
′′
, l21 = − A

H1
=⇒ hyperbolic

sine branch

• interface conditions
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Maxwell’s rule
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determination of the plateau stress and Lüders strain
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Numerical
Analytical
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Analytical and finite element plastic strain rate profiles ṗ
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